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NOTATION

a (a) Crack size(s).

ao Initial crack size.

B Infinite transition matrix, equation (4.1 2B).

Bt= [bi] Fifth order transition matrix for the inspection at time Ti.

E. Expectation.

f(alt) Conditional probability density of crack length
(see 0(.), 0(.)) at time t.

ANa) Reliability type density of crack life (see Equation (2.6)).

fAQ),f N) Density of initial life in the absence of any inspection or repair.

f.t) Initial life density as affected by inspection or repair.

f. () f.t) defined in (T, Ti+±] extended to (T, oo).

F. Cumulative density of distribution function, not necessarily proper.

[, l-F..

gi, gi(t - T,) Density of initial lives in structures repaired after inspection Ti.
(This is initial data).

Gi Distribution corresponding to gi, not necessarily proper.

h.(t) = e-rosf.(Q) Used for Equation (5.15A).

Hi Defined by (5.10A). This is a hypothetical distribution of initial lives
from a hijacked distribution for structures repaired at T.

1,J, K Terms of (4.7); see (4.10).

M Generic form of moment generating function, E. exp(-u.).

M, Moment generating functions from gi. See Section 4.4.

N Defined by (5.15) and (5.15A).

P, Pi(a) Pi(t.) Probability of rejection for an inspected structure with a crack of
length a or at time to after initiation (operating characteristic).
Normally used without subscripts.

P = P(T - TgO) Used in Section 4.3.

Al. Laplace transform of P. with respect to to when to = Ti. + i.e. when
the crack starts just after an inspection.

P1 = Pj(T - t + ta) The probability of rejection at an intermediate inspection (Section 3.2)

P, = I -P Pr(.),

Pr(.I.) Probability, absolute or conditional.

P.(t6lto) Defined by (4.2). Overall acceptance probability during growth of
some crack.



Abbreviation used in I, Equation (4.8) and preceding.

R = R(a) = R(t.) Average local crack growth rate.

Al Probability of rejection at i-th inspection, time Ti. Equation (3.1).

R ={Ri = I,..., o} Infinite vector of Rt's.

r(a) = r(ts) Risk function.

ro = r(O) Hijack risk component.

S) Arbitrary step function, Section 4.2.

(u) Laplace transform of S(i).

t Current equivalent time or cycles.

t. Other times according to subscript

T, Known inspection times, To = 0.

u, v, w Laplace transform variables.

,T = T+1I - Tf i-th inspection interval.

,, 8 Real shifts for Bromwich inversion contours.

0(t) Distribution of final lives without inspection, (2.6).

0.(t) Distribution of final lives with inspection and repair, (3.6).
• Convolution function.

Subscripts

The subscripts associate the main symbol with the quantity listed.

o Crack initiation without renewals.

Crack initiation affected by renewals.

As above but distinguished by inspection period.

a Crack growth time.

c Set complementation.

i Inspection period (T, T+i].

i,, io The inspection just before the start of the current crack i.e.
Ti, < to < #+

Sets

Union and intersection are here denoted by "+" and the normal product
convention while complements are indicated by the subscript c. Figures I and 5
illustrate some of the events.

A Attrition.

E Universe.

M = CAeRe Mainstream - cracked but still in use.

R Rejected at inspection.

* Empty set (see Section 5.1).



1. INTRODUCTION

It is a truism that fatigue life, especially with single cracks, consists of initiation time and
crick growth time. The models based on this approach when the initiation is random, have
been described in previous Reports1 .2.3. In the last of these, considerations of continuity of
probability, together with deterministic cracking, led to a first order partial differential equation
(true for vector cracks also), which is the same as the continuity condition for compressible
flow. It is also a degenerate form of the second order Fokker-Planck equation which it would
become for random cracking. Most generally this describes the infinitesimal evolution of
probabilities associated with continuous Markov processes4 .5 .

In an earlier Report s the density of crack lengths (and thence that of total life) were found
from the continuity equation without considering inspections, though these were mentioned
briefly. Under the term hijacking it also introduced the effect of losses not due to fatigue. The
present Report extends the previous solution to include inspections as well as the hijack risk.
It considers the distribution of total life, the moment generating function, and the transition
matrix for changes of state between inspections.

2. PREVIOUS RESULTS

Before proceeding, we shall summarise results for the one-crack model without inspection.
As before, we shall use the generic notation f, F, 0, and M, to denote density, distribution
functions and moment generating functions of their arguments. Density is affected by attrition
and where necessary, these symbols will be subscripted to avoid confusion.

For vector cracks the continuity equation

Df =f(div R(a) + r(a)) (2.1)
Dt

holds, where D denotes total derivative and R(a) = daldt, the previously averaged crack rate,
r(a) = total risk function including hijack risk, and
div R(a) = dR/da for a single cracking, a known function of crack length.

When this is expanded, one obtains the degenerate Fokker-Planck equation (for single
cracks)

b+ R(a) f _= -fd R(a)+r(a)) (2.2)

with the characteristic equations

dt = da/R(a) = -dflf (dR/da + r(a)). (2.3)

In this the crack trajectories are characteristics and the general solution for crack length
density is

R(a.) fa r (a)
f = f(a.1to) 1a) exp - da

R(ao) to
=f(aolto) i exp - r(t) dt (2.4)

introducing the growth time ti to reach crack length a. Here a* is the initial crack size, a constant,
and to, the initial life, corresponds to the crack alt. The growth time



ta = t - to.

When the hijack risks are denoted ro, and the boundary conditions are included r(t) = r(a(t))

f(alt) e-t exp - r(t)dt (2.5)= R-(-a) Jx -o J
where the genericf refers to different density functions according to its subscript.

It is now possible to average the risk r(a) at time t for the overall life density.

0t) = roe-roto [I - F.(1)] + e-rolofo(o) *f.(t.) (2.6)

ra
wherefa (t) = r(t.) exp -- r()dt, the reliability based crack life density.

The moment generating function, E0 exp -ut, follows as

Mo(u) = Mo(u + r.) Ma(U) + r [l -Mo(u+ro)] (2.7)

which differs slightly from the corresponding equation of Reference 3 since -u is used here
to assure convergence for positive u.

2.1 Effect of Inspections

This is twofold: in the first place, the density of crack length will be reduced suddenly
at a number of steps corresponding to each inspection. Secondly, structures rejected at an
inspection may be returned, after repair, to the population. This brings the whole problem
into a close relationship with statistical renewal theory. However, the latter does not include
hijack risks, nor the two stages involved in fatigue.

We will first consider renewals and then the corresponding moment generating functions.
In the following, it is most convenient to have all variables as time, and continue to use to, ta
and t to denote initiation time, crack period and their sum. The subscript * will refer to densities
or generating functions affected by renewals. Inspection times are Ti, i = 0, 1, 2 etc. where
To= 0. The i-th inspection interval and the associated quantities occur after Ti.

Not cracked Cracked

r" Attrition

FIG 1. POSSIBLE STATES OF STRUCTURES
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3. LIFE DISTRIBUTION

At a particular time the population of structures suffering two-stage fatigue with inspections
and attrition may be described by the Venn diagram of Figure 1. In the course of time the
arrows indicate the evolution of members of the population; one may equivalently imagine
uniform measure density over the rectangle and the subset boundaries moving left and inwards
opposite to the arrows. The zero set corresponds to rejection of uncracked structures. This is
the general process we intend to describe.

3.1 Renewal Allowance for Single Cracks
At T - just before inspection, suppose the partial density of vector crack lengths is

f(lI T -), which therefore becomes

f(a Ti +) = (I - P,(a))f (ai Tf-)

just afterwards. With respect to the whole population this gives the probability of rejection at
the i-th inspection as

R=,= Pt(a)f(aI T -) da (3.1)
0

We also define P, the operating characteristic of the inspection method, in terms of growth time
so that Pt(a) = Pt(tA). The context will indicate which definition is current.

After T, the population will also include repaired or modified structures returned from
inspection. It may also be depleted by those retired from service. Statistically, these repairs or
retirement affect the initial life distribution. After each inspection we will assume that structures
are repaired to the same condition (not necessarily the original as new condition) despite the
possibility of differing crack lengths being discovered. (Since it is mathematically easy, the
restored condition shall be assumed specific to the particular inspection).

This assumption requires us to first consider the density of crack initiation which may
determine boundary conditions forf(alt > T) (see Ref. 3).

For one crack in the absence of inspections, let e-rot (l - Fo(t)) be the survivorship function
for initial life when hijack attrition is included (Ref. 3). When inspections are included but not,
for the moment, hijacking, let the corresponding survivorship fraction (based on the original
population) be F.ql(t) for t < Tj say.

Just after an inspection all the uncracked structures will be retained and also augmented
by the fraction R[I - Gd0)] of inspected and repaired structures.
Symbolically

I - F.i (Tt+) = [I - F.fi- (Ti-)] + Ri[l - Gi()] (3.2)

where Gi(t) is a general, possibly partial, distribution function of initiation at times T+ t of
structures repaired at time Ti. At time f, Tj < t < Tj+1 with hijacking try

e- rof (I - F.q(t)) = e - rot (I - F._j(t)) + Rie
- ro( - T (I - Gi(t - T))

or

Ae = A-1_ (t) + Hi (3.3)

where F= l -Fand

Hi ero l Ri[I - Gj(t - Tj]

Recursive substitution then leads to

+ H (3.3A)

which requires an interpretation of F.o, Go etc.

3.l j



Initially (3.3) indicates that

1 - F.o(To) I - F.-I(To) + eroo Ro[I - Go(O)l (3.3B)

and we would expect that
F~o( It - T) = Fo(t),

the initial failure distribution. If we define To = 0 then for 0 < t < T1, (3.3) becomes

I - F.o(t) = I - Fo(r) = I - F. 1 (t) + Ro[i - Go(t - To)] (3.3C)

The definitions may now be arbitrary. The most convenient for us is F._(t) a Fo(t) and
Ro = 0 leaving Go arbitrary.
(Note that all F.t, Gt etc. are defined on (0, oo); F.t is applied on (Ti, Tt+i) and F. M F. etc.
everywhere with the index suited to t.) To summarise To, Ro = 0, F.-1 (t) = F.o(t) = F.(t)
and GO is arbitrary.

In (3.3) or (3.3A) the restored factor exp-rot allows for hijacking. These equations now
provide some of the boundary conditions forf(al Ti < I < Tt+1 ) when the solution has marched
to Tj+1 - . Then (3.1) provides Rj+1, allowing (3.3C) to operate over the next inspection inter-
val (Ti+i, T1+2).

3.2 Density Function for Attrition
Now include the hijack factor in (3.3C) and consider the density of initiation

d

t e - rot F = roe-rot Ft + e-rof.(t) (3.4A)

where the first term is obviously the local incidence of hijacking and therefore a direct component
of the density 0t) of total life.

From (3.3A) the second term is

e- rt. eroTi R gj(t - Tj) (3.4B)

j I

where gj is the initiation density corresponding to G, which may be partial or defective.
Consider f(aIT < t < Tt+1) after the i-th inspection. Such a crack would have begun at

t - t.(a) and would therefore have been inspected an integral number of times. The operating
characteristic P(a) of any crack is the defined in terms of crack length. In keeping with our
present approach, it is more convenient to define this in terms of the growth time ta as P(ta).
We further define P, as the characteristic corresponding to the j-th inspection of a crack.

to= t-ta alt ta(t a)

Ta
T i0 ~ o1 Tj -to

tQ I

to Tj

FIG 2. NOTATION FOR INSPECTION DURING CRACK GROWTH
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In the notation of the figure

PJ = P(T - t + t).

For a long crack, several non-trivial Pj's are possible. Unless specifically stated, several PI's in
the same expression refer to the same crack trajectory.

Now consider the basic density f(alt) allowing attrition of cracked structures and also
inspections. If Tj < I < Tj+1 integration (Ref. 3) along the characteristic and multiplications by
P1  I - P produce

t\
R(a)f(ajt) = Pio+.. A exp -J r(n)dt e-rotof.o(t - Q

\ to /

= exp - 0 r()dt e-ro to roTJRj gj .- T) (3.5)to 1 P') eIa(f =0 =

where ta is the growth time and To < I - I. < To+1 . As before, with the hijacking, this produces
the attrition density

0.(tlri < t < Tj+1) = roe-rotFi ± r(a)f(alt)da
Ja0

roe- rot [1 - F.Q)J + e-aotf.(to) 1 (T- 1o)dF0 (t0 ) (3.6)

with dFa(ta) from (2.6), the initiation to= t - ta, as always, and P1 is described in full. In (3.5)
the finite upper limit t is no restriction because f.= 0 for negative arguments. Recognition of
this will aid the manipulations below.

4. MOMENT GENERATING FUNCTIONS

Equation (3.6) appears to be a convolution but the status of P1 is uncertain.
Let us form the moment generating function as

(Ili) e-utdt = roe-( ro+u) t (I - F.(t)]dt +
I~ JT JO

,=o JTJ 0 ,.+1

wheref. is the global form off.r, the whole of the modified initial life distribution.

4.1 Inspection Functions

Consider the product of the inspection factors as functions of initiation It and of growth
time Ia. For fixed to this term is a step function of ta (determininb i - i) but it is at least piecewise
continuous in t. since, almost always, T- to continuously determines crack sizes at inspection.

Occasionally, through i decreasing, to introduces another factor, but if P.a) = 0, which
we now assume, continuity with respect to to will be retained.

Let us abbreviate the inspection factor

M (I - P(T1- to)) = P.tIt1) P. (4.2)1.4P.

where P. is a step function decreasing from unity. We now intend to treat (4. 1) as a convolution
by taking some of the inspection terms as part of the crack life distribution. In (4.1) the region
of integration is the infinite sector shown in Figure 3. The operation began with integration

... ...... ..| . .. .. . . . . .. .. " " .. ... .. " t | .. . .. . U " = - !5



along strips such as AB which were then extended to horizontal inspection bands whose contri-
butions were finally summed.

Ti. 1

Ti

c~haracteristic P(a

a) ta)
E

tQ Cracking time

FIG. 3 REGION OF INTEGRATION FOR MOMENT GENERATING FUNCTION

If we change the variable t to to, then we may do the first integration along CD and include
the summation by adopting the limits of (0, c ) for ta.

Thequus with (4.2) ation (4.1) becomes

Tigo

r 0 0

MO(u) . (I - MW(u + ro))
u + ro

+ f.(to)e-(u ro)to P.e-uta dFa(ta)dto (4.3)
i o f f,

where M.= E. exp (-uto) = MGF off..
When P. - I the integral reduces to the uninspected form M.(u + ro)M.(u); in general,

these terms introduce convolutions of transforms.

4.2 Step Function Transforms

We have already seen that P. is a step function for given to and in the figure for (4.1) the
first integral along CD traverses an infinite number of inspections. In (4.3) then P., given by
(4.2) is interpreted for all ta. Thus P.(talt)fa(ta) may be regarded as a defective conditional
density of cracking life.

By the convolution theorem for Laplace transforms

0 P,(ta)fa(ta)e-ut- dta = 2 r i P,(u - v)Ma(u)dv (4.4)

o - ico

where the bar indicates a Laplace transform, as is Ma.

6
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For any step function S(t) such as that below

1-0 Po

P1

P-i P

to 0 t t2  t3 t

FIG 4. TYPICAL STEP FUNCTION

it is easily shown that, in the notation indicated,

9(u) = u- (Pi- Pii)e- Kli  (4.5)

In the present instance with steps from (4.2), one would have

tj = Tjo - to, ... tj = To+j - t o,

with to arbitrary. Part of the to dependence is in the value of Tj.+, - to.
Let Plo be the transform of P. corresponding to to = To + e. Then for to elsewhere in

this inspection interval, the transform of the step function is

eUf(to-Tio),Pio + u-1(0 - eu(to-Tio) (4.6)

The first term has a simple shift operator but the second "spillage" term is required because
the backwards shift truncates S(t) for t < 0.

4.3 Complete Moment Generating Function

We now perform the transforms indicated by (4.3) requiring the transform of step functions.
From (4.5)

. = u-1  (Pi- Pi i)e-u (Ti-Tio), P= 1, Pio I, P(- 1 = 0,

io

giving (4.6) as

euto u-1  (P- Pi-j)e-uTo + u-1 ( - euto-uTio)

io

with P, = P(T,- To).

The inner integral (4.4) of (4.3) is now

+-.-f v-1evto (Pi- Pij)e- Ti M,(u - v)dv
27ri - ioo io

+ fl a(v)dv - I f irvle(ToTo)M (u - v)dv (4.7)+21rt i o U --  21i fY- i o

with the u - v argument variously placed.

7



All the components of (4.7) are similar so that we now substitute the first into (4.3) to obtain

1 i I + y f.(to)e-('-v+ro)toMz(u - v)Qio dvdto
f.=o J To f - i o

where Qo = (Pt- P-)e-VTi/v.
i I.

If the order of integration is reversed then in each interval the inspection factor is constant
with respect to to. Thus the to limits of I may be infinite provided the inspection factor is regarded
as a step function. The to integral is thus the transform of the products off. and this step function.
This introduces another convolution whence

= I(2i--- Ma(u M.(U - v + ro) (Q - Qd-g) dvdw
(2.7i)2 JJL.~u- v- w+t=0

where Q-i = 0.
In the w-plane there is a pole at u - v ± ro. Contour integration then leaves the cancelling
residues,

I Ma(U - v)M.(u - v + r.) (Qi- Q)- d = 0 (4.8)
ffi

The next component of (4.7) leads to

Tf+l1 y + i o.  dv

i = f.(to)e-u+ro)toMa(u - v) v dto
i= J Tlo yio*v v

__- ! MV(u + ro) + Ma(u - v) dv, absorbing the summation,
27ri J - io v

= M.(u + ro)H(t)fa(t) = M.(u + ro)Ma(u) (4.9)

using the convolution theorem.

In the third component of (4.7) the presence of Tio indicates the presence of another step
function. In (4.3) it leads to

.~'Tf0+1 1 V+ 5~o
K =-- - f.(to) e Ma(u - v)e - vTio dvin0,]"o21ri f- inv

ff,=OJ Tio Jy- ~
where the step function heights are v-1 exp -vTto. In the same way as before, using (4.5),

K - +-- io 2fly + i -Mo(u - v)M.(u -V + r-) ----- dvdw

~1 8 - ~iJo -. .. v
Once again the only w-pole is for w = v in which case the residues again cancel; K = 0.

When all these results are assembled ((4.3), 4.8) and (4.9))

Mo(u) = Hijack term + I + J + K

o I- +Mo(u +ro +M.(u + r)M(u) (4.10)

U -M-ro L +

which is exactly the same as it would be without inspections except that M. =/. and includes
renewals. This last fact means in general that M0(0) 0 1. Other cumulants of the total life are
shown in Table 1.

18



TABLE 1

Cmulants of Fatigue Life in Term of InItlatiom ad Crack Time Moeata

M.(u) = MGF of cycles to initiation

M.Ikl(-r) = pt + 0(r.) where pt - kth moment, o - - Rt[! - G.(oo)]
k-I

MOWu = I + OCIu + I[ 2u2 ... o =-- O

= MGF of cracking time, moments at.

Put

m - Mkl(ro); Ak - -k,-i/ro,

where

r. a Risk of loads above ultimate and of hijacking.

Then for total life we have the cumulants:
I = meA, + ro- 1 ; (Mean)

K2 = 2m1 AI + moA2 - mo2AI2 + r 2  (Variance)
Ka = 3m2AI + 3mIA2 + moA 3 - 6momIA12 - 3mo2AA 2 + 2moSAiS + 2/re3

K4 = 4msAi + 6m2A2 + 4mA 3 + moA 4 - 12mom2A12 - 24mom1AiA2 + 24mo2miAI3

- 12m12AI 2 - mo2 {4A1 As + 3A 2
2} + l2m0

3A12 A2 - 6m0
4AI 4 + 6/rO4

4.4 Tr sform of f.

Though informative, equation (4.10) is still not presented in terms of basic MGFs, relying
as it has on M.. To relate M. to M. and other known MGFs define f. piecewise from (3.4).
Then its transform

M.(u) = e-Utf.i(I)dt

f~~j T, +

= MOWu) - err ut 
RoT Rjg t -T)dt

in which Mo(u) = Eo exp - uto. The RA, the overall probabilities of rejection at times T, are
effectively constants.

Changing the order of summation absorbs one sum to produce

M.(u) = MO(u) + Rier. TJ e-11 gjQ - T)dI

=- RI e-(u-o)TJ M(u), R. = I here,
j=~O

defining MI(u) = MGF of gj(t).

9



From (3.1) and (3.4)

R1  f PI.-i... Pi-1 PieToo I- F4,1' f.q.oQo) a

ao 
Ra

=_j_ FP 1 P(t.)e-Yto.t,)/.,.Qto)dt.
0J.+

where Fa(t) = I - F.(ta) and the finite upper limit is set by the fact that initiation t,> 0.
This expands into

RA = J' P(To+1 - to)... P(TI-i - to)P(t.)e-rAo[l - F*(t.)lf.,(t°) dis (4.11)

where the factors P, P depend implicitly on t. also and

to = TJ - ta.

Now we know that
J

A t) e- ro*k Rkgt(t - Tt), go -f.o(t), (4.11 A)

whence ,
R, = f P(Tf-+1 - TJ + t,)... F(TJ 1 - T, + ,,)P(t,)Pt.)

Jo

x I e-oTkRtgk(T - Tt + t.) dt. (4.12)
k=O

This is essentially an infinite set of recursive linear equations for Ri (Re = I). If their matrix
form is

R = BR B = [bill

then bj = P(TJ0+1 - TJ + )... P(Tr1. - Ty + ta)Pt,)F0(t)

x e-roT gj(T - T + t.)dta if i <j; t., Tj -jo,

=0 if i > j, (4.128)

all obtainable in principle by simple quadratures. Since R. is unity these equations are not
homogeneous.

5. EMBEDDED MARKOV PROCESS

In another interpretation the 1%j are transition probabilities (rejection and repair) in a
transient discrete Markov process embedded in the attrition and fatigue process. The element
bit represents probabilities of structures repaired after time To being rejected again at the
inspection T1.

However, in the equation R = BR, the matrix B consists of transition probabilities among
an infinite number of states. Nevertheless, these states are still incomplete, not including attrition,
hijacking or even new cracking. Furthermore, the infinite vector R is described by a single
transition B covering all time. It is more convenient to consider transitions just after each
inspection time Ta; the states at such times may be regarded as agglomerations of the states
represented by bit. Thus, structures cracked at T include rejections and repairs from previos
inspections.

10



In this way, the process R may be identified with a series of transitions of a smaller process
after each inspection. From the Venn diagram of Figure I, the number of states in this smaller
process is six-three for cracked and three for uncracked structures. One of these states has zero
probability (although it may be considered an absorbing state) so that a 5 x 5 transition matrix
is required for each inspection time. These will be denoted 8 for time T,. The state ignored is
the rejection of uncracked structures at inspection.

To find 1t, it is necessary to consider the possible combinations of various states. This
amounts to gathering previous results and formalising assumptions, implicit or otherwise. We
consider the epochs T, + just after any inspection and imagine the "mainstream" of structures
as having survived the initial hijacking at rate r., becoming cracked by time Ti, and then being
subdivided into the mutually exclusive states of "immediate" (i.e. at T+) rejection, attrition
in the i-th interval (To, T, Ia] and the mainstream for Ti, 1 . The last will be augmented, as at each
inspection, by repaired structures cracking again; one of the state transitions to be considered.

$.1 State PrOINSIIks

We begin by considering the state probabilities at T, J which may also be normalisers for

the conditional transition probabilities. Comparison with Tt + + and the use of known results
then provide elements of B. Let 0(t) be the integrated attrition and abbreviate O(T), F.(T) to 4
and F.i. In addition C, A and R are sets of respectively cracked, failed or hijacked and rejected
structures; before time Ti 4- in the first instance. Set complements are subscripted c and unions
and intersections are most conveniently denoted by + and the product convention.

Among the eight factors of (C t C)(A -A,)(R - R,) three are empty, namely:

CAR Inspection and rejection of a cracked structure after attrition;

CeA R Inspection and rejection for hijacked structures; and

CAR Rejection of ordinary uncracked structures.

After obvious condensations this leaves the universe

E = CR -CA t CArRe -CcA + CeAr (5.1)

in which C, A and their complements describe the end result of past history but R, R, refer
*to the one inspection, beginning the interval (Ti, Til].

At time T+ we know that

Pr(CR) = Ri from (3.3) with t = Tj (5.2)

The basic hijack allowance states that the mainstream CCAC of uncracked structures is
exp(- roT)( - F.).

Without hijacking, Pi(CcA,) would reduce to I - F.t so that the difference

Pr(CA) = (I - e-roT)Xl - F.), (5.3)

the fraction for hijacked but uncracked structures.

Hence for those already cracked

Pr(CR + CA + CARe) -- F., (5.4)

the cracked mainstream.

By definition 0, = Pr(A) = Pr(CcA + CA)

from which subtraction provides

Pr(CA) = 01 - (I - e-rord)[I - F.41 (5.5)

Now
Pr (cracked mainstream) = Pr(CA + CAcRe + CR)

• !1



and by subtraction

Pr(CAreR) F4 - RI, f (I e r.T")jl , , - I e ru,,[I - F.11 -R, - *1 (5.6)

This is not the mainstream at T. i since it will be affected by new cracking and attrition during
the interval (Ti, Ts, 1).

CR

C c A c M

CcAcRc= M

CA

FIG 5. STATES AFTER EACH INSPECTION

5.2 Trautiom Probbilties

Equations (5.1) to (5.6) describe the five states shown in Figure 5 and their probabilities.
Now consider transitions between them during (Ts, Tt.1 ]. The main difference from the pre-
viously used infinitesimal Markov process is that the finite inspection interval allows transition
from repaired or uncricked structures to any state.

Obviously attrition is always in absorbing state. The process as a whole is therefore transient
and the ultimate fate of all structures is either retirement, or attrition by failure or hijacking.
We shall now examine transitions out of the five basic conditions using set theory and pro-
bability where necessary.

The more difficult elements will require interpretation of various terms in the expressions
(3.5), (3.6) or (3.3) for attrition or rejection. Integrals of these may appear as convolution
functions.

5.2.1 CR

In terms of time variates this has the total measure

R- J PtP(ta)e r~,"[l - F(ta)f.to)dlt, to = T, - tI.
0 i. 4 I

which leads to the component of initiation density Rie ,o'l" ri)g,(to ri).
The arguments of Section 3 apply equally to all components so that in the interval (T1 Tt,1 ]

this corresponds to the partial density of crack length

(Rt/R(a))e-roo r'lI - F(t)g(t - TI - 1), to - to, (5.7)

which forms part of (3.5).
Corresponding to (3.6) one finds the attrition rate

0(tiFrom RI) Rjre ro I ''iI -Gdi - Tt)]

R1 3' e ro(to r' ,(t - T, - to)dF(to)

12



from which integration shows

RiPr(CRI -~ CeAIRA) A fgJ roe--re(#-TI) - G&Q - Ti)jdt 58

and

RtMrCR --. CAI R4 = A e.-roe1-Tilgi(: - Tj- to) dFo(to)dt (5.9)
f T, JO

The first of these may be integrated by repeating the general argument for (5.3). The transition
element is therefore

Pr(C~A - CeAIAg) =(I e-rA ) (I - Gg(dTd)), (.0

where dTi = Ti+i - Ti.
Equation (5.9) has no simpler form but it may be interpreted as a probability. Since

I- HtaQ) = e-To*(1 - G&.)] (5.10A)

is a survival probability under attrition, its complement is a true distribution function and never
defective. Then, as a convolution,

Pr(CRa -). A IRt) = PrQ.o + to < 7's)

= Hj*F*(iiTj), say,

where t. -H&(A) H, from above, and to - F~a
for the reliability based crack growth time. This includes Ri --. CiA but the time does not allow
inspection. By subtraction of (5.10)

Pr(C~A - .CAIRa) = Hj*F44,T) - (I - eV T( -1,7)( GI(4Td)), (.

we have already noted that

Pr(CRa -* CcAeIRt) = e-to2I"(l -Gj(4dTd) (5.12)

augmenting the mainstream of uncracked structures.
There remain two more transitions to CRj+1 or CAeRe, in the cracked mainstream. The

first of these follows in the same way as Ri itself, but from the partial density (5.7). Thus

J

If we recall our assumption P(O) = 0, this takes the form

f ' Tj~ta[1- Fa.Q)JdH(4Tj - to) = (P[l - Fo])*Hj(4Tj) (5.13)

Finally, for transitions to the cracked mainstream,

Pr(CAg -+ CAeRcIR.) =I - Eq. (5.10) -... - (5.13)

Hj(AT0) - Hi1 ((l P)F. + PX4JTI) (5.14)

=(0 - PHIl - FaD*Hi(4dT0.

S.2.2 CAeRc = M

This is defined by (5.6) for entry to the inspection interval (Ts, T4+11. Just after T1+1, it has
changed by rejection and an influx of structures repaired after the previous inspection Te.

Obviously M -+ C~A and M --* CAe are impossible; also the influx of cracked strutctures,
newly repaired and otherwise, complicates Pr'(Mg Mj+iIMd).

13



Equation (5.6) provides the unconditional Pr(M+j) as well as Pr(Mj but this influx makes
it more convenient to start again from the crack length density (3.4). At time T .,, the only
cracks from Mi must be those for which t. > ATi. If (3.4) is restricted to these at t T,+,
then all attrition during (T, T + ] is accounted for, and also the rejections Rg+1. Then, changing
the cracked length variate to t, TiT+i 1 4 1. .

Pr(M1)Pr(M1+ II MO = P, [I - F.Q.) jr" RiggQ. - TI)dta

with s, = T+i - ts. This differs from Pr(M+1 ,) only by

Nd = (I - P(t.))[I - Fa(t.)e-rAo-f*(T, - t,)dt. (5.15)
j0

after some obvious simplifications. As in (5.11) it would now be possible to define a distribution
I - (exp - rotXI - F.(t)), and thus define this term as another convolution. However, this
includes elements of CeA, the attrition of uncracked structures, and to abbreviate N, we use
the defective density h.(Io) = (exp - rto)f.(to) so that

Ni = ((I - P)[I - FJ)*h,(4T) (5.1SA)

If we are guided by context we may conveniently let Pr(M) = Mg, using the same symbols
for the event and its probability. Then, using (5.6) and (5.15),

Pr(Mj -~ MgiIMj) = (Mi+ - NIMg=I - e-roTi+'[I - Fi+1] - R,+j - 0g-i - Nj
1 - e--o' [I - Fg] - R - (5.16)

The difference Mi + Ns - Mi+i must now be divided among Mi - CRg+i and M -* CAg+i
to find the corresponding transition probabilities. Consider the attrition of cracked mainstream
structures during (Tt, Ti+il given by (3.6), and based on (3.5). In the latter, CA'RC or Mi
correspond to use of the partial densityf, -(t,) during the i-th inspection interval. This excludes
attrition of structures repaired at Ti. If they are cracked however, their absolute probability
from (5.11) is known to be

RgH*F(dTi) - (5.10) = RPr(CRl -. CAIRd.

In (3.6), the second term is the attrition density of previously cracked structures, and those
repaired at Ti. Writing the second term as

0. - r,(exp - rot)[I - F,(t)]

and allowing for (5.16)
Ti+i

MiPr(CAeRc - CAITi < t < Ti+) (4 t) - roe-r-4[l - F.(t)])dt +

+ Rj(l -e-r-3'i)[I - Gj(4Tj)] - RiH*F&(4 T#)

The second term of the integral follows as before from the increment of (5.4). After some
reduction this becomes

MjPr(M - CAji-th) =J 0 1 + F,(I - e-"') - RtH*F(AT)

- (I - e-Oreol)(e-ToilI - FJ - Rg[l - Gg(AT)]} (5.17)

From the remarks below (5.15)

MgPr(M - CRg+iji-th) = M + Ni - Mi+, - Eq.(5.17)

which eventually reduces to MiPr(M - CR +i-th) =

R+1 - Rg -J F, + Ni + RHi*Fa(dT) - (I - e--or[I -G(ATM)]1

with Ri, N and H defined by (3.1) or (4.11) - (4.12), (5.15) and (S.IOA).

14
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!2.3 CA.

This is the only remaining non-trivial state. Any transition is possible from it and its absolute
probability at T, i is

Pr(CA,) e o-ri(I - F.1]

During (Ti, To. i] Pr(C A) increases by the increment of (5.3) and this comes from
CcA. t CR. Thus,

e rT, [ I - F. Pr(CAc - CrA ii-th) -- APr(CA) - RiPr(CR - CAlRj)

( - e rt,' )te r i[I - F.j] - Rill - Gg(ATi)]} - AF.(l - e-ro'Pi 1) (5.19)

using (5.3) and (5.10).
As a whole, Ci comes from GA, f CR, and of course its increment has measure JF.i, the

decrease in C. For the increment from CeAe, subtract the transitions from CRf giving

Pr(CeA, - C,1i) - F.i - RiPr(Ri - C(A t R i M)iR1)

dF.i - RiHdATi) -- (I - e roiAri)[- Gi(AT)]} (5.20)

which follows from (5.11), (5.13) and (5.14) respectively.
Consider

- APr(CrAe) =Pr(CcAr){Pr(CcAc -C14ii-th) -+ Pr(CGAc -* Ce(A + Ae)li-th)

whence by transposing (5.19) and (5.20)

e rT,[l - F.i]Pr(CAc . CcA,1i-th) = RAH(ATO -- 4F.ie-roTri(I - e-roTi) (5.21)

with H, from (5.1OA).
As was done with transitions CR CU.I we must now partition (5.20). After subtracting

the correction term in (5.19) for R( - C(,, one may imagine the three types of transition
during (TI, TiI] being driven by f., 1. Attrition is simplest with a contribution from part of
(3.6) minus (5.11). Thus, the appropriate rate is

0(IT1 ti - Tu,0)=J e ro "f.a-l(t - ta)dF(ta)

J: T e ro 0of4It) - Rigi(to - TO)dF(ta)

Over the inspection interval this integrates to

e-r.r,I -- F.]Pr(C A - CA i-th)

= Aod - e roTI(I - e r_,1T,)(l -- F.o - R1{Hi*F(ATi) - (I - eolTi)[I - Gt(4T])J} (5.22)

using (5.11) for the subtracted term.
Inspection of (3.5) for I : Ti, - indicates the crack length density

R(a)f(alT 1 ) - e ro-oil - F(t.)(lI - P(/.))f.i_ (to)

for structures from CeA,. For rejected structures, we replace I - P by its complement and
integrate to obtain

e-roI - F.iJPr(CcAe -+ CR+i1i-th) -- (P(l - F,))*H.(4Ti) - Ri(P[I - FaJ)*H(AT,) (5.23)

using (5.13) with the assumption P(O) 0 and (5.15A), (5.10A) for definitions of H. and Hi.
We now know probabilities for transition to CA f CRt+t and to Ci+i as a whole from

equations (5.22), (5.23) and (5.20). Since the transition events are disjoint
e 'o"Il - F.4Pr(C.A, -M,l:.i-th) = JF.t - A -+ e- ori(1 - e--")[I - Fil

- RiNt - (PIt - F])*H.(4T,) (5.24)

using (5. 1SA).

1S



5.3 Trail n Matrices

It is now possible to arrange the elements above into transition matrices for each epoch
Ti+. In many cases, normalising to conditional probabilities introduce awkward fractions so
that it is most convenient to place the normalisers in a diagonal prefactor. Doing this, and
gathering elements from above, leads to the matrices shown in Tables 2 and 3.

Let P-1 = [Pd]-' be the prefactor where only P4 and P5 differ from unity.
From Section 5.1 we know the absolute state probabilities of Table 2 which provide

P4 and Ps.

TABLE 2
NourmasImg Factors

j State Name Absolute Probability PJ

I CrA Hijacked (I - e-roT)Il - F.,] I
2 CA Failed or hijacked Ot- (I - e-roTi)[I - F.(]
3 CR Rejected R1
4 CARe = M Cracked mainstream 1 - Ri - 0, - e-roTi[l - F.] *
5 CeAc Uncracked mainstream e-roTi[l - F.q] *

As in previous column.

In previous derivations, all results depend on functions which are fully defined at time
T,+ on the range of crack lengths Ou[ao, oo) which imply the other functions needed from
(T, Ti,+l]. This validates the Markovian nature of the discrete transitions.

6. CONCLUSIONS

Using the same procedures, the previous analysis3 for fatigue life distributions in one-crack
models with hijacking have been extended to cases with arbitrary renewals at general inspection
intervals.

The conclusions are similar to those derived previously if one postulates a defective distri-
bution f. of crack initiation lives as affected by renewals, and includes factors depending on
the operating characteristic of the inspections. The moment generating function has the same
form as before3 and with f.(to) replaced by f.(to). The proof of this is facilitated by treating
inspection and crack life density together.

The two-stage fatigue process is Markovian in continuous time. At any time a structure
must be in one of five states corresponding to combinations of attrition, cracking and rejection
at inspection or their complements. Transition between these states is a variable Markov chain
embedded in the continuous process with epochs conveniently placed just after inspections.

6.1 Implementation

Life distributions, risk rates and rejection probabilities may be found from two FORTRAN
IV programs developed from the preceding theory. The second of these has options for random
crack rates and/or run-time setting of inspections. This generalisation and the program will be
described in two further reports.
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